What has sometimes been called the “standard” argument for fatalism never achieved the critical popularity of Richard Taylor’s (1962) infamous argument. But it has enjoyed far greater longevity. In *De Fato* Cicero (1960) tells us it was known in ancient Greece as the “idle argument,” for it purports to show the futility of attempting to control one's fate and, hence, those persuaded by it could be led to a life of inaction and idleness. Even with such antiquated credentials, however, the argument continues to exercise fine contemporary minds (e.g. Schlesinger 1993).

The most-discussed version of it concerns finding oneself in 1940 London facing an imminent air raid. For the sake of both concreteness of the discussion and continuity with tradition, I will focus on this version, which is as follows:

1. Either I will be killed in the air raid or I will not.
2. If I will be killed, I will be killed whatever precautions I take.
2’ So, if I will be killed, all precautions will be ineffective (from 2).
3. If I will not be killed, I will not be killed whatever precautions I neglect.
3’ So, if I will not be killed, all precautions will be superfluous (from 3).
4. Therefore, all precautions are pointless (from 1, 2’ and 3’).

Of course, the argument depends on suppressed bridge premises. The inference from (2) to (2’) depends on
If I will be killed whatever precautions I take, then all precautions will be ineffective, and that from (3) to (3') on

If I will not be killed whatever precautions I neglect, then all precautions will be superfluous.

In addition, (4) follows from (1), (2') and (3') in virtue of

A precaution that is ineffective or superfluous is pointless.

The argument is genuinely enigmatic, for it simultaneously seems both sound and sophistical. If sound, it would be deeply unsettling, since formally identical arguments would show all our practical deliberations to be pointless, and this would falsify our common-sense conviction that our lot in life is contingent upon our choices and actions. One may seek consolation in the fact that there is widespread agreement that the argument is obviously faulty. But consolation yields to consternation when one recognizes that there is equally widespread divergence of opinion regarding what is wrong with it — consternation which is compounded by the inadequacies of these opinions. Reconsideration of the principal objections and their inadequacies, however, will bring to light not only several desiderata of an adequate refutation, but also a way to satisfy them.

One line of criticism simply rejects premises (2) and (3) (Ayer 1964; Hospers 1967; Small 1988). As Hospers puts it:

these two hypothetical propositions are about as clearly false as any empirical propositions can be. It is a plain empirical fact, which any set of statistics will bear out, that those who neglect to take precautions stand a higher chance of being killed and those who do take precautions stand a higher chance of remaining alive (p. 323).
This objection does have substantial intuitive force. Unfortunately, intuitions regarding (2) and (3) also pull in a contrary direction. Schlesinger, for example, maintains that it is “impossible to deny” that (2) is logically necessary, since “if it is given that it is true that I am going to be hurt in this air raid then this proposition remains true no matter what other proposition is also true” (1980, p. 117). Equivalent considerations, of course, support (3). Along similar lines, Dummett takes both (2) and (3) to have the form 'If p, then (if q, then p)' (1968, p. 261). And this would certainly appear to make them tautologies. Thus, a rejection of (2) and (3) as empirically false, by appeal to intuition alone, is insufficient. If (2) and (3) are false, they must be shown to be formally, as well as intuitively, problematic. That is, any objection to the argument based on a rejection of (2) and (3) must explain either why they do not have the form Dummett claims or why, though they do, they are nonetheless not logically necessary.

Dummett rejects the argument on different grounds. He claims that, however ‘if’ is interpreted, there is no sense of ‘if’ according to which (3) is necessarily true and entails (3'). But Dummett’s critique is inadequate in two respects. First, he does not provide an account of ‘if’ according to which (3) is possibly not necessarily true, “because it is notoriously difficult to elucidate such a sense of ‘if’” (p. 263). And any objection that relies on this possibility should provide such an account of ‘if’ — especially one that takes (3) to have the form ‘If p, then (if q then p)’. Second, Sobel (1966) has shown Dummett’s argument to be unsound. Sobel does agree with Dummett’s conclusion, however. So I will focus on Sobel’s argument for their common conclusion.

Sobel argues that (2) and (3) must satisfy two conditions: they must be necessarily true and they must support “their halves” of the conclusion. But, Sobel claims, (2) and (3) are
ambiguous between two interpretations, neither of which satisfies both conditions. To see why, consider (2). According to Sobel (p. 81), (2) is ambiguous between

(2a) If I will be killed, then I will be killed and the precautions, if any, that I will take will not prevent my being killed

and

(2b) If I will be killed, then I will be killed and there are no precautions I can take which are such that I would not be killed if I were to take them.

Sobel argues that, although (2a) is necessarily true, it is insufficient to support “its half” of the conclusion; and, although (2b) supports “its half” of the conclusion, it is not necessarily true.

The argument derives its appearance of soundness, according to Sobel, precisely from the ambiguity of (2): “By reading the sentence first one way and then the other, it is possible to think that there is a single proposition which is adequate in both ways” (p. 84), i.e., both necessarily true and supportive of its half of the conclusion.

Consider first his argument regarding (2a). (2a) is necessarily true, since its consequent,

(2a_{con}) I will be killed and the precautions, if any, that I will take will not prevent my being killed

is equivalent to its antecedent,

(K) I will be killed.

(2a), however, is insufficient to support its half of the conclusion. To support its half of the conclusion it must entail

(S) If I will be killed, then it is pointless to take precautions.

But (2a) does not entail (S), because (S) is not necessarily true. For, Sobel claims, it is possible that,
though I am going to be killed, if I were to wear my helmet (which I will in fact not do), I should not be killed.... I am going to be killed, so the antecedent is true. And there is a precaution I can take which would prevent my death, so the consequent is false. It is *not* pointless for me to take precautions, since by taking precautions I can save my life (p. 82).

Thus, (S) is not necessarily true and, hence, is not entailed by (2a), since (2a) is a necessary truth.

Now consider his argument regarding (2b). (2b) does entail (S), since their antecedents are identical and

(2b*) If there are *no* precautions I *can* take which are such that I would not be killed if I were to take them, then it is pointless to take precautions,

which links the consequent of (2b) with that of (S), is necessarily true. However, Sobel argues, (2b) is not necessarily true. To be necessarily true, its consequent,

(2b\text{con}) I will be killed and there are no precautions I can take which are such that I would not be killed if I were to take them,

must be (strictly) entailed by its antecedent, (K). But (2b\text{con}) is not entailed by (K), since (K) is equivalent to (2a\text{con}) and (2a\text{con}) does not entail (2b\text{con}). The reason (2a\text{con}) does not entail (2b\text{con}), according to Sobel, is that it is conceivable that “I will not wear my helmet, though I can, and that I will be killed, though I should not be killed if I were to wear my helmet” (pp. 80-81). In a case such as this, (2a\text{con}) is true since “none of the precautions, if any, which *I will take* will save me,” but (2b\text{con}) is false since “there is a precaution *I can take* which would save me” (p. 81; emphases added). Thus, Sobel argues, (2b) is not necessarily true. So, under each interpretation of (2), the argument is unsound.
Although it is subtle and intriguing, there are a few respects in which Sobel’s analysis falls short. First, there is no reason to think that the ambiguity Sobel sees in (2) plays any role in the argument. For (2a) is not at all fatalistic, so it cannot be a relevant interpretation of (2). The argument intends to show the futility of all precautions, not just those I actually take (or neglect). It would be beside the point to appeal to the futility of precautions I actually take to show the futility of “whatever precautions I take.” That is, (2a) and its companion (3a) entail only

(4a) Either all precautions I actually take will be ineffective, or all precautions I actually neglect will be superfluous,

which is not a fatalistic conclusion, since it is compatible with there being precautions I could take (or neglect), but do not, which would not be ineffective (or superfluous). The interpretation of (2) that the fatalist intends, then, is (2b). This does not, however, defeat the argument for the reasons Sobel gives, for the fatalist thinks also that (2b) is a necessary truth. Thus, it is not true that the argument derives its appearance of force by playing off an ambiguous statement; it derives it from (2b) alone, which supports its half of the conclusion and itself appears to be a necessary truth.

This points to the second problem with Sobel’s analysis. His argument to show that (2b) is not necessary depends on the supposition that it is conjointly possible that I will be killed and that I would not be killed if I were to wear my helmet (which I will not do). Again, this supposition does have substantial intuitive force. The problem is that the fatalist does not share the intuitions that support it. For, if (2) is taken to have the form Dummett claims, it could be read as

(F) If I will be killed, then (if Q, then I will be killed).
Under this reading, the fatalist can maintain that, if it is true that I will be killed, it will remain true whatever sentence might be substituted for Q — in particular, even if Sobel’s false sentence ‘I wear my helmet’ is substituted. Then, relying on strong intuitions that (F) is necessarily true, the fatalist can argue that, since (2b) should be interpreted as (F), (2b) is necessarily true, Sobel’s intuitions to the contrary notwithstanding. Of course, in order to show that (2b) is not necessarily true, Sobel would again appeal to the fact that (2b) entails (S) and to his argument that (S) is not necessarily true. But his argument to show that (S) is not necessary makes use of the same supposition employed to show that (2b) is not necessary. So the fatalist can replay the same hand. Consequently, like Hospers’ objection, Sobel’s argument relies too heavily on intuitions that the fatalist does not share. An adequate rejection of (2) cannot simply reject the fatalist’s intuitions in favor of contrary intuitions, but must demonstrate why the fatalist’s intuitions about (2) are formally mistaken.

Third, Sobel’s interpretations of (2) are needlessly complex and somewhat unnatural. For he interprets the consequent of (2),

\[(2_{\text{con}}) \text{ I will be killed whatever precautions I take,}\]

as a conjunction of ‘I will be killed’ with a conditional: in the case of (2a) it is basically the indicative conditional

\[
\text{If I take precautions, I will be killed,}
\]

and in the case of (2b) it is basically the subjunctive conditional

\[
\text{If I were to take precautions, I would (still) be killed}
\]

(see p. 80, where Sobel casts the distinction in these terms). But a more natural reading of \(2_{\text{con}}\) would take it simply as a conditional, à la Dummett, for two reasons. First, the conjunct ‘I will be killed’ is redundant in the consequents of both (2a) and (2b), since (2a) and (2b) are each
equivalent to the respective sentences obtained by dropping it. Second, on the conditional reading of \((2_{\text{con}})\), the clause ‘whatever precautions I take’ is serving a simpler function: indicating merely that the sentence preceding it, i.e., ‘I will be killed’, is true under all those conditions in which I take precautions. Hence, a simple conditional reading of \((2_{\text{con}})\) is to be preferred. Although this is a minor disagreement, it will be significant with respect to a proper understanding of \((2)\).

The final objection to the argument I will consider is offered by Stalnaker (1981), who employs a wholly distinct strategy. Although he agrees with Dummett's reasons for thinking that the inferences from \((2)\) to \((2')\) and \((3)\) to \((3')\) are invalid, he does think that they are reasonable nonetheless. On Stalnaker’s account, an inference is reasonable “just in case, in every context in which the premisses could appropriately be asserted or supposed, it is impossible for anyone to accept the premisses without committing himself to the conclusion” (pp. 194-195; emphases added). A context, here, is a set of background presuppositions that includes “whatever the speaker finds it convenient to take for granted, or to pretend to take for granted,” and which can be represented by a set of those “possible worlds not ruled out by the presupposed background information” (p. 197). Thus, any context in which I could appropriately presuppose that I will be killed is one in which “I would surely be reasonable to conclude that taking precautions would be pointless” (p. 205).

The problem with the argument, Stalnaker thinks, is that the contexts relative to which the inferences from \((2)\) to \((2')\) and \((3)\) to \((3')\) are reasonable are not the contexts relative to which it is reasonable to infer \((4)\) from \((1)\), \((2')\), \((3')\) and \((4*)\). That is: “Subordinate conclusions, legitimately drawn within their own subordinate contexts, are illegitimately detached from those contexts and combined outside of them” (p. 204). Thus, although the main argument would be
valid provided the subarguments are, it does not follow that the main argument is reasonable provided the subarguments are. In short, the standard argument confuses validity (which is context independent) and reasonable inference (which is not).

Stalnaker is right that the standard argument commits an illegitimate context shift. But I believe he is mistaken about the location of the illegitimate shift. To show why, I proceed to my own analysis of the argument. For simplicity, I will focus on (2); since (2) and (3) have the same form, points made about (2) apply *mutatis mutandis* to (3).

An adequate interpretation of (2) should, I think, be charitable to the standard argument, accord with Dummett's interpretation of its form, and make clear how (2) could easily be mistaken for a logical truth. Consider:

\[(2^+)\quad \text{If I will be killed, then (if I take P, then I will be killed), for any possible precaution P.}\]

First, \((2^+)\) entails \((2')\), because

\[(2^{**})\quad \text{If (I will be killed if I take P), for any possible precaution P, then all precautions will be ineffective}\]

is necessarily true. So \((2^+)\) is charitable, since it makes the standard argument valid. Second, \((2^+)\) has the form Dummett attributes to (2). And, third, given its (apparent) form, it is easy to see how someone like Schlesinger (for example) could take \((2^+)\) to be a logical truth.

But \((2^+)\) is *false*. To see why, begin by noting that the antecedents of

\[(2^+)\quad \text{If I will be killed, then (if I take P, then I will be killed), for any possible precaution P}\]

and
(3⁺) If I will not be killed, then (if I neglect P, then I will not be killed), for any possible precaution P conjointly exhaust the possibilities. So one of them is true of the actual world.³

Suppose, for simplicity, that the antecedent of (2⁺) is true, and again abbreviate it ‘K’. Then (2⁺) will be true if and only if its consequent,

(Z) if I take P, then K, for any possible precaution P

is true. But, since (Z) purports to hold for any P, (Z) will be true only if all its instances are,⁴ where its instances are such sentences as

(A) If I hide in the cellar, then K

and

(B) If I drive out of the city limits, then K

and

(C) If I duck and cover, then K.

Surely such sentences should not be read as indicating that my taking a precaution is a (logically) sufficient condition for getting killed; that is, they are surely not material conditionals. For if they were, by Strengthening the Antecedent, (C) would entail (indeed, be equivalent to)

(Cₛ) If (I duck and cover and not-K), then K.

But, while (Cₛ) seems plainly false, there are circumstances in which we would accept (C). Similar points apply to the other instances of (Z). Thus, since the instances of (Z) are not material conditionals, if they are true, it is (roughly) because their consequents are true in those (perhaps non-actual) circumstances in which their antecedents are true.⁵

The question, then, is how to evaluate (2⁺) given this fact about the instances of (Z). Well, again, (Z) is true only if all its instances are. But the instances of (Z) fall into two classes:
that in which the substituends for P denote precautions I actually will take and that in which they
do not.

Consider the class of those conditionals in which the substituends for P denote
precautions I will not actually take. Such conditionals are true just in case, in the nearest
possible world in which ‘I take P’ is true, K is also true. Very roughly, we arrive at the nearest
possible world in which ‘I take P’ is true by holding fixed the empirical regularities, and as many
particular facts as possible, that obtain in the actual world (where the particular facts that can be
held fixed are those that are causally and logically independent of my not taking P).\(^6\)

A lot depends here on those particular facts we are to hold fixed in moving from the
actual world to the world in which ‘I take P’ is true. Of paramount importance are those
concerning the degree to which I am vulnerable in the raid.\(^7\) For simplicity, imagine the degree
of vulnerability to be a function of distance from the epicenter of a bomb blast which will kill
everyone within a one-mile radius but no one beyond. Thus, whether K is true in the nearest
possible world in which ‘I take P’ is true depends on my degree of vulnerability in the actual
world and the substituend for P. For example, if I am in my house at the epicenter, have only
two minutes warning before the bombing, and P is replaced with ‘the precaution of hiding in the
cellar’, K will undoubtedly be true. Indeed, it would be true even if P were replaced with ‘the
precaution of immediately getting in the car and driving away from the epicenter at 30 mph’.
But if I am at home on the edge of the one-mile radius with the same warning, K would be false
given the latter substituend of P.

How does this help us evaluate (Z)? Well, fatalism requires that, if I actually will be
killed, I will be killed no matter what my circumstances or what we substitute for P. That is,
fatalism is not the view that there are some situations in life in which the outcome is beyond our
control; rather, fatalism is the view that all situations in life are those in which “the future will be of a certain nature regardless of what we do” (Hospers 1967, p. 322). So fatalism does not follow from the possibility (or existence, even) of some isolated “no win” situations in which the outcome is “fated” whatever we might do. For the existence of such situations in life (and there are indisputably many) is compatible with the existence of many others in which the outcome depends, in varying degrees, upon what we do. With respect to (Z), then, it may be true that I will be killed no matter what is substituted for P if my degree of vulnerability in the raid exceeds any degree of precaution available to me. But it will not be true if, in my circumstances, there is some available precaution that would nullify my vulnerability — if, for example, I am at home on the edge of the radius, I am given two minutes warning, and I can drive away from the epicenter at 30 mph. This is where the statistical regularities to which Hospers appeals may be relevant; for they may aid in determining which precautions would prevent my death given my circumstances.

Thus, there is some set of actual circumstances in which I will be killed and there is some substituend for P, such that it is false that I will be killed in the (nearest) possible world in which that same set of circumstances obtains and ‘I take P’ is true. In other words, K is false in some possible worlds in which ‘I take P’ is true, for some P. So some instances of (Z) are false. Consequently, (2⁺) is false, since its consequent purports to hold for all substituends of P.

Nonetheless, (2⁺) does have the appearance of a tautology, since it appears that if K is true, the truth of (Z) would thereby be guaranteed. This, however, ignores the fact that the first occurrence of K in (2⁺) is evaluated in the actual world, while the second occurrence is evaluated in the nearest possible world in which ‘I take P’ is true. And K could be true in the actual world, yet false in that possible world. In Stalnaker’s terms, there is a shift in context from the first to
the second occurrence of K in (2^+). Thus, although (2^+) is not a logical truth, it owes its appearance of being a logical truth — and the argument owes its appearance of soundness — to this concealed context shift.

Now consider the class of conditionals in which the substituends for P denote precautions I actually will take. There are two things to note here. First, this class of conditionals can be specified by restricting the domain of quantification in the consequent of (2^+) as follows:

$$(2^-) \quad \text{If K, then (if I take P, then K), for any precaution P that I actually take.}$$

Second, in evaluating (2^-), we do not change worlds when moving from the evaluation of its antecedent, K, to the evaluation of its consequent, since ‘I take P’ is true in the actual world (that is, the actual world is the nearest possible world in which it is true). So (2^-) is true. But (2^-) is also then equivalent to Sobel’s $(2a)$, which we have seen is not a fatalistic premise at all. Thus, as an argument for fatalism, the standard argument employs (2^+), and (2^+) is false.

There is, however, an interesting way in which the fatalist could respond to this objection. The problem with (2^+) is that the two occurrences of K do not describe states of affairs in the same world. So the fatalist could attempt to overcome this difficulty by indexing both occurrences of K to the same world. And there are two ways in which this can be accomplished.

First, the fatalist could index all the component sentences of (2^+) to the same world, as follows:

$$(2w) \quad \text{For any world } w \text{ and any precaution P, if ‘I will be killed’ is true in } w, \text{ then (If ‘I take P’ is true in } w, \text{ then ‘I will be killed’ is true in } w).$$

The problem with $(2w)$, of course, is that it is merely a modalized version of (2^-) and, hence, not a fatalistic premise. What is needed, then, is a modalized version of (2^+) that indexes both
occurrences of K to the same world, while not indexing the statement ‘I take P’ to that world.

This would be accomplished with the second alternative,

\[(2w^+) \text{ For any worlds } w, w^* \text{ and any precaution } P, \text{ if ‘I will be killed’ is true in } w, \text{ then}

(\text{if ‘I take P’ is true in } w^*, \text{ then ‘I will be killed’ is true in } w)\].

This premise is true and, together with complementary modalized versions of (1) and \((3^+)\), it makes the argument valid.

I will leave construction of the full argument and the determination of its validity to your imagination and comment on why \((2w^+)\) is true. (Again, what holds of it holds of \((3w^+)\).) As per the analysis of \((2^+)\), let us suppose that the antecedent of \((2w^+)\),

\[(Kw) \text{ ‘I will be killed’ is true in } w,\]

is true. Then \((2w^+)\) will be true if and only if its consequent,

\[(Zw) \text{ If ‘I take P’ is true in } w^*, \text{ then ‘I will be killed’ is true in } w\]

is true. As with \((Z)\), \((Zw)\) will be true only if all its instances are. From what was said about those instances of \((Z)\) in which the substituends for P denote precautions that \(I \text{ actually will take}\), it should be clear that all those instances of \((Zw)\) in which the substituends for P denote precautions that \(I \text{ will take in } w\) are true. In other words, those instances of \((Zw)\) in which \(w\) and \(w^*\) are \(\text{the same world}\) are true. So focus now on the class of those instances of \((Zw)\) in which the substituends for P denote precautions that \(I \text{ will not take in } w\) — that is, those instances of \((Zw)\) in which \(w\) and \(w^*\) are \(\text{not the same world}\). Those conditionals are true just in case their consequent, \((Kw)\), is true in those circumstances in which their antecedent, ‘‘I take P’ in \(w^*\), is true. But, \(ex \ hypothesi\), \((Kw)\) is true. Thus, all instances of \((Zw)\) are true and, hence, \((2w^+)\) is true.
It is worth being clear about the difference between \((2^+)\) and \((2w^+)\). The reason \((2^+)\) is false, recall, is that the (counterfactual) antecedent of \((Z)\) causes a shift from the context of the actual world, in which the first occurrence of \(K\) is true, to the context of the world in which ‘I take \(P\)’ is true. The second occurrence of \(K\) is then evaluated in the context of the world in which ‘I take \(P\)’ is true, and it is false in some of those contexts. With \((2w^+)\), however, the statement ‘‘I take \(P\)’ is true in \(w^*\)’ does not affect the context in which the second occurrence of \((Kw)\) is evaluated, for both occurrences of \((Kw)\) are made true by states of affairs in \(w\).

Now, however, the fatalist’s argument faces the following dilemma. Either \(w\) and \(w^*\) are the same world or they are not. If they are, \((2w^+)\) reduces to \((2w)\), which was shown not to provide any support for fatalism. If, on the other hand, \(w\) and \(w^*\) are not the same world, \((2w^+)\) is trivially and inconsequentially true. The reason is that taking precautions in \(w^*\) — that is, some world other than \(w\) — will obviously not prevent my death in \(w\). For causal dependencies are intraworld, not cross-world, dependencies; so events in one world neither bring about nor prevent events in another. But this is unremarkable and not to the point of whether my taking precautions in \(w^*\) might be effective with respect to preventing my death in \(w^*\). If precautions in \(w^*\) do prevent my death in \(w^*\), then precautions in \(w^*\) are not ineffective (hence, not pointless). And, in that case, when I deliberate about what precautions, if any, I should take, I could choose to actualize the state of affairs in \(w^*\) that consists in my taking the precautions that prevent my death in \(w^*\), and I could thereby actually prevent my death. So, if \(w\) and \(w^*\) are not the same world, \((2w^+)\) provides no support for fatalism. Therefore, either way \((2w^+)\) provides no support for fatalism.

The reason, of course, is that \((2w^+)\) is already formulated in a way that breaks the connection between worlds in which I take precautions and worlds in which I am (not) killed.
Thus, by indexing both occurrences of K to the same world, the fatalist no longer has an argument for fatalism. In order to have an argument for fatalism, the premise must be formulated in a way that indexes the second occurrence of K to the same world to which ‘I take P’ is indexed. That formulation, however, is (2^+), which we have seen to be false.8

NOTES
1. Cf. Schlesinger (1980, p. 141), who argues that (2) in fact means only (2a), and that hence the standard argument is invalid. But he has since abandoned this interpretation of the argument and now thinks it valid (in 1993).

2. If you are offended by the quantification over precautions, take (2^+) as an abbreviation of something like: If I will be killed, then (if E occurs, then I will be killed), for any event E that is a taking-of-a-precaution by me.

3. One way to reject the standard argument is to claim that, even though the disjunction of the antecedents of (2^+) and (3^+) is necessarily true, since the disjuncts are future contingents, it cannot be inferred that either of them is (now) determinately true. Indeed, such a strategy has been employed as a way of avoiding all fatalistic conclusions. I am not interested in addressing this issue here. So I will be content simply to throw my lot in with that of all other philosophers -- including those I have discussed so far -- who find undesirable such an unorthodox interpretation of the Law of Excluded Middle.

4. I say ‘only if’, rather than ‘if and only if’, since only the weaker claim is necessary for my argument and the weaker claim is true under both the substitutional and objectual interpretations of the quantifiers.
5. I have no ax to grind about how to classify the instances of (Z), and it does not matter for my argument. In fact, any of the following options are compatible with my argument. Option One: Classify all instances of (Z) as indicatives and adopt a Stalnaker-type theory of their truth conditions (see Stalnaker 1981; 1991). Option Two: Classify all instances as subjunctives — some of which (may) have antecedents that are incidentally true of the actual world — and adopt some form of a possible-worlds account of their truth conditions (as in, e.g., Lewis 1986a; 1986b). Option Three: Classify those instances with true antecedents as indicatives and those with false antecedents as subjunctives, and adopt some form of a possible-worlds account of the truth conditions of subjunctives. Further, within Option Three, there are two sub-options: extend the possible-worlds account of truth conditions to the indicatives as well (à la Stalnaker), or confine that account to the subjunctives and treat the indicatives as having the same truth conditions as material conditionals (à la Jackson 1987, chap. 4).

The only option that is incompatible with my argument is that of classifying all instances of (Z) as indicatives and treating them as having the same truth conditions as material conditionals. There is an additional reason, however, for thinking that not all instances of (Z) are indicatives, even though they appear to be in the indicative mood, which derives from general considerations regarding future-oriented conditionals with false antecedents. As Jackson puts it: before the last [1984] presidential election commentators said ‘If Reagan loses, the opinion polls will be totally discredited’, afterwards they said ‘If Reagan had lost, the opinion polls would have been totally discredited’, and this switch from indicative to subjunctive counterfactual did not count as a change of mind. They were expressing the same opinion both times (1987, p. 66).
So it seems that at least some of the instances of (Z) should be treated as subjunctives — namely, all those that express what would be expressed by a past-tense subjunctive after the air raid. But, if you choose Option One, we may still peacefully coexist.

6. Although I am employing a Stalnaker-type theory of (counterfactual) conditionals (Stalnaker 1991), a different theory (e.g. Horwich 1987, chap. 10; Jackson 1977; Lewis 1986a; 1986b) could be substituted without substantively affecting my conclusions. I leave the necessary modifications in my argument to the imagination of the reader with these alternative lifestyles.

7. This way of formulating the issue is inspired by Schlesinger (1993).

8. I am indebted to Tomis Kapitan for very helpful comments on earlier drafts.

REFERENCES

