Value Distribution of L-Functions with Rational Moving Targets

Matthew Cardwell¹, Zhuan Ye²

¹Intelligent Medical Objects, Inc., Northbrook, USA
²Department of Mathematical Sciences, Northern Illinois University, DeKalb, USA
Email: mcardwell@e-imo.com, ye@math.niu.edu

Received August 26, 2013; revised September 26, 2013; accepted October 1, 2013

ABSTRACT

We prove some value-distribution results for a class of L-functions with rational moving targets. The class contains Selberg class, as well as the Riemann-zeta function.

Keywords: Value Distribution; Moving Target; L-Function; Selberg Class

1. Introduction

We define the class \(\mathcal{M} \) to be the collection of functions
\[
L(s) = \sum_{n=1}^{\infty} a(n)/n^s,
\]
satisfying Ramanujan hypothesis, Analytic continuation and Functional equation. We also denote the degree of a function \(L \in \mathcal{M} \) by \(d_L \) which is a non-negative real number. We refer the reader to Chapter six of [1] for a complete definitions. Obviously, the class \(\mathcal{M} \) contains the Selberg class. Also every function in the class \(\mathcal{M} \) is an L-function and the Riemann-zeta function is in the class. In this paper, we prove a value-distribution theorem for the class \(\mathcal{M} \) with rational moving targets. The theorem generalizes the value-distribution results in Chapter seven of [1] from fixed targets to moving targets.

Theorem. Assume that \(L \in \mathcal{M} \) and \(R \) is a rational function with \(\lim_{s \to \infty} R(s) \neq 1 \). Let the roots of the equation \(L(s) - R(s) = 0 \) be denoted by \(\rho_{\beta} = \beta + iT \). Then

(I) For any \(b > \max \left\{ \frac{1}{2}, 1 - \frac{1}{d_L} \right\} \),
\[
\sum_{\beta \leq \pi T} (\beta - b) = O(T), \quad \text{as } T \to \infty.
\]

(II) For sufficiently large negative \(b \),
\[
2\pi \sum_{T \leq \gamma \leq 2T} (\beta - b) = (-b) d_L T \log \frac{4T}{e} + O(\log T),
\]
as \(T \to \infty \).

Proof of (I). It is known that if \(L \in \mathcal{M}, \) then
\[
L(s) = \sum_{n=1}^{\infty} a(n)/n^s = 1 + O(k_0^\sigma), \quad \text{as } \sigma \to \infty;
\]
where \(k_0 \) is the index of the first non-zero term of the sequence of \(\{a(n)\}_{n=1}^{\infty}, \) \(s = \sigma + it \) with \(\sigma, t \in \mathbb{R} \). Since \(\lim_{\sigma \to \infty} L(s) - R(s) \not= 0 \), there exists \(\sigma_0 > 0 \) such that \(L(s) - R(s) \not= 0 \) for \(\Re s > \sigma > \sigma_0 \). It follows that \(\beta = \sigma \) for all real part of zeros of the function \(L(s) - R(s) \). We set \(R(z) = P(z)/Q(z) \) where the degrees of \(P, Q \) are \(p, q \), respectively; and define
\[
\tilde{\ell}(s) = (s) - R(s).
\]
Thus, there is \(\eta > 1 \) such that \(\tilde{\ell} \) is analytic in the region \(|s| > \eta \) since \(L \) is a meromorphic function in \(\mathbb{C} \) with the only pole at \(s = 1 \). We apply Littlewood’s argument principle [3] to \(\tilde{\ell} \) in the rectangle \(R = \{ \sigma + it : b \leq \sigma \leq c, T \leq t \leq 2T \} \) where \(c, T \) are parameters satisfying \(c > \max \{ \sigma, 1/b \}, T > \eta \). Thus,
\[
\int_{\sigma}^{\sigma+2\pi} \log |\tilde{\ell}(s)| \, ds = -2\pi \int_{b}^{\infty} \nu(\sigma, R) \, d\sigma
\]
where the given logarithm is defined as in Littlewood’s argument principle [3]. To prove our result, however, we first decompose our auxiliary function by

Open Access

APM
\[\tilde{\ell}(s) = \begin{cases} P(s) \left(\frac{L(s)}{P(s)} - 1 \right) & \text{for } p \leq q \\ R(s) \left(\frac{L(s)}{R(s)} - 1 \right) & \text{for } p > q \end{cases} \] (1)

Without loss of generality, we may assume that \(p, q \geq 1 \) whenever \(p \leq q \) since we can always write \(\tilde{\ell}(s) \) that exhibit polynomial growth, which is necessary for our proof. In the case of \(p > q \), \(R \) already exhibits polynomial growth, and no such adjustment is necessary. We now integrate the logarithm of \(\tilde{\ell} \) to get

\[
\int_{\mathcal{R}} \log \tilde{\ell}(s) ds = \begin{cases} \int_{\mathcal{R}} \log \ell_1(s) ds + \log P(s) ds + O(T) & \text{for } p \leq q \\ \int_{\mathcal{R}} \log \ell_2(s) ds + \log R(s) ds + O(T) & \text{for } p > q \end{cases}
\]

where the \(O(T) \) terms are the integrals of the maximum contribution from writing \(\tilde{\ell}(s) \) as a sum of logarithms. By our choice of \(T \), both \(\log P \) and \(\log R \) are analytic in \(\mathcal{R} \). Hence, Cauchy’s Theorem gives

\[
\int_{\mathcal{R}} \log \tilde{\ell}(s) ds = \begin{cases} \int_{\mathcal{R}} \log \ell_1(s) ds + O(T) & \text{for } p \leq q \\ \int_{\mathcal{R}} \log \ell_2(s) ds + O(T) & \text{for } p > q \end{cases}
\] (2)

To connect this integral with Littlewood’s argument principle [3], we note that the definition of \(c \) guarantees that

\[
-2\pi i \sum_{\beta_k \neq 0} (\beta_k - b) = i \text{Im} \left[\int_{c-iT}^{c+iT} \log \ell_k(\sigma) d\sigma + i \int_{c-iT}^{c+iT} \log \ell_k(c+it) dt \right] + O(T)
\]

\[
= -i \int_{c-iT}^{c+iT} \log \ell_k(b+it) dt - \int_{c-iT}^{c+iT} \log \ell_k(c+it) dt - \int_{c-iT}^{c+iT} \arg \ell_k(\sigma + iT) d\sigma + \int_{c-iT}^{c+iT} \arg \ell_k(\sigma + iT) d\sigma + O(T)
\]

\[
= \sum_{j=1}^{\tilde{M}} I_{j,k} + O(T),
\]

for instance.

We now estimate \(I_{1,k} \). For \(T \) large enough, we have

\[
\log \left| \ell_1(b+it) \right| \leq \log \left| \frac{L(b+it)}{P(b+it)} - 1 \right| \leq \log \left(\frac{L(b+it)}{P(b+it)} \right) + \log \left(\frac{1}{Q(b+it)} \right)
\]

\[
\leq \log \left(|L(b+it)| + 1 \right) = \log \left(|L(b+it)| + 1 \right) \leq \log \left(|L(b+it)| + 1 \right) + \log 2.
\]

Then for \(T \) large enough, \(t \geq T, k = 2 \), we find in a similar fashion that

\[
\log \left| \ell_2(b+it) \right| \leq \log \left(|L(b+it)| + 1 \right) + \log 2.
\]

Since we have the same estimate for \(k = 1,2 \), we find that

\[
I_{1,k}(T,b) = I_{1,k} \leq T \int_{c-iT}^{c+iT} \log \left| b+it \right| dt + O(T)
\]

\[
= T \int_{c-iT}^{c+iT} \left(\frac{1}{T} + \frac{1}{T} \log |L(b+it)| dt \right) + O(T)
\]

where the final bound follows from Jensen’s inequality.
It is known [2] that for \(b > \max \left\{ \frac{1}{2}, 1 - \frac{1}{d_L} \right\} \),
\[
\lim_{T \to \infty} \frac{1}{T} \left[L(b + it) \right]^2 \, dt = \sum_{n=1}^{\infty} \frac{|a(n)|^2}{n^{2\sigma}} = O(1).
\]
Hence, \(I_{1,k}(T,b) \leq O(T) \) uniformly in \(b > \max \left\{ \frac{1}{2}, 1 - \frac{1}{d_L} \right\} \).

We next move to estimate \(I_{2,k} \). For sufficiently large positive real number \(c \), we have
\[
\left| \frac{L(c+it)}{P(c+it)} \right| \leq 1 \text{ and } \left| \frac{L(c+it)}{R(c+it)} \right| \leq 1,
\]
so
\[
\log |\ell_1(c+it)| \leq \log \left| 1 - \frac{L(c+it)}{P(c+it)} \right|
\]
since \(q \geq 1 \). Furthermore,
\[
\log |\ell_2(c+it)| = \log \left| 1 - \frac{L(c+it)}{R(c+it)} \right|
\]

Since we may take \(c \) large enough so that \(|\ell_1(c+it)| \leq 1 \), we may write \(\log \ell_1(c+it) \) using a Taylor series expansion in the rectangle \(\mathcal{R} \). For \(k = 1 \), we have after taking real parts that
\[
\log |\ell_1(c+it)| \leq \Re \left\{ \sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \right\} \leq \log \left| 1 - \frac{L(c+it)}{P(c+it)} \right|
\]

We now observe that for sufficiently large \(T \) and some constant \(M \) we have
\[
\int_{\mathcal{R}} \left| \frac{L(c+it)}{P(c+it)} \right|^2 (n_1 \cdots n_k)^s \, dt \leq \frac{T}{|P(c+iT)|^2} \leq M^{1-k} \leq 1,
\]
for \(k \in \mathbb{N} \) and
\[
\limsup_{k \to \infty} \left(\sum_{n=1}^{\infty} \frac{1}{n^{2\sigma}} \right)^k = \sum_{n=1}^{\infty} \frac{1}{n^{2\sigma}} < 1
\]

for sufficiently large \(c \). In light of these bounds and the definition of \(\mathcal{M} \), we have (6)
\[
|I_{2,k}| = -\Re \left\{ \sum_{k=1}^{\infty} \sum_{n_1}^{\infty} \cdots \sum_{n_k}^{\infty} \frac{a(n_1) \cdots a(n_k)}{(n_1 \cdots n_k)^s} \right\} \leq \sum_{k=1}^{\infty} \sum_{n_1}^{\infty} \cdots \sum_{n_k}^{\infty} \frac{a(n_1) \cdots a(n_k)}{(n_1 \cdots n_k)^s} \leq \sum_{k=1}^{\infty} \sum_{n_1}^{\infty} \cdots \sum_{n_k}^{\infty} \frac{1}{n^{2\sigma}} = O(1),
\]
By (5), \(\log|g_z(c)| \) is bounded. Further, it is clear from a property of \(L \) functions that we have

\[
|L(s)| \leq A|t|^\alpha, \quad t \to \infty, \quad s \to \infty;
\]

for some positive absolute numbers \(A, B \) in any vertical strip of bounded width. The same estimate must hold for \(g_z(z) \) as well. Thus, the integral in (8) is \(O(\log T) \), implying that \(\hat{\nu}, \hat{\lambda}_z(R) = O(\log T) \). Since the interval \([b, c] \subseteq D(c, R) \), it follows that

\[
N \leq \hat{\nu}, \hat{\lambda}_z(R') = O(\log T).
\]

With this bound, we integrate (7) to deduce that

\[
|I_{j,k}| \leq \int_{\gamma} |\arg \ell_k (\sigma + it)|d\sigma \leq \int_{\gamma} (N + 1)\pi d\sigma = O(\log T).
\]

As previously noted, we may bound \(I_{j,k} \) in the same way. Thus, we attain the desired bounds for \(j = 1, \ldots, 4 \) and \(k = 1, 2 \). Consequently, the first part of the theorem is proved by using (4).

Proof of (II). As in the proof of the first part of the theorem, we conclude that there exists a real number \(\sigma_0 \) for which the real parts \(\beta_k \) of all \(R \)-values satisfy \(\beta_k < \sigma_0 \); and also, there exist \(B, T' > 0 \) for each rational function \(R \) such that no zeros of

\[
L(s) - R(s) = 0 \quad \text{in the quarter-plane} \quad \sigma < -B, t > T'.
\]

As before, we define the rectangle \(R = \{ s = \sigma + it : b \leq \sigma \leq c, T \leq t \leq 2T \} \) where \(b, c, T \) are parameters satisfying \(b < -B - 1, c > \max \{ \sigma_0 + 1, b \}, T > \max \{ \sigma_0 + 1, b \} \).

Proceeding as in the proof of the first part of the theorem, we see that

\[
\begin{align*}
2\pi i \sum_{r \leq y \leq 2T} (\beta_k - b) &= -i \int_{-2T}^{2T} \log |\ell_k (b + it)| dt - \int_{-2T}^{2T} \log |\ell_k (c + it)| dt \\
&= \int_{y} \arg \ell_k (\sigma + i) d\sigma + \int_{y} \arg \ell_k (\sigma + i2T) d\sigma + O(T) \\
&= I_1 + \sum_{j=2}^{4} I_{j,k} + O(T)
\end{align*}
\]

for \(k = 1, 2 \) where \(\ell_k \) is defined as in (1). In the equation above, we note that we have chosen to compute \(I_1 \) separately. Indeed, this is the only estimate that we will need. For the integrals \(I_{j,k}, j = 2, 3, 4 \) and \(k = 1, 2 \), the bounds given as in the proof of the first part of the theorem still hold. First, integral \(I_{2,k} \) is unchanged. On the other hand, the integrals \(I_{3,k}, I_{4,k} \) have been altered by our choice of \(B \), but, as we have done as before, we still have the desired bound since the only requirement is that we consider \(L \) in a vertical strip of fixed width, which we have in this case.

We now bound \(I_1 \). Since \(b < -B \), we have by the functional equation in the definition of \(L \) function,
We now consider the last term in (9). Since,
\[\limsup_{t \to \pm \infty} \frac{\log |L(b+it)|}{\log t} = \left(\frac{1}{2} - b \right) d_L, \]
and noting \(b < 0 \), we have for any \(\delta > 0 \) and \(t \geq T \)
\[|L(b+it)| \geq \left| \left(\frac{1}{2} - b \right) d_L - \delta \right| \]
for sufficiently large \(T \). Then we see the quotient
\[\left| \frac{R(b+it)}{L(b+it)} \right| \leq \frac{R(b+it)}{\left| \left(\frac{1}{2} - b \right) d_L - \delta \right|} = O\left(\frac{1}{t} \right) \]
when \(-b \) is large enough so that
\[\deg R < \left(\frac{1}{2} - b \right) d_L - \delta + 1. \]
Therefore, we find that
\[\log \left| 1 - \frac{R(s)}{L(s)} \right| = O\left(\frac{1}{t} \right). \]
Integrating in light of these estimates, we see
\[
\int_T^{2T} \log |L(b+it) - R(b+it)| \, dt \\
= \left(\frac{1}{2} - b \right) \int_T^{2T} (d_L \log t + \log(\lambda Q^2)) \, dt \\
+ \int_T^{2T} \log |L(1-b-it)| \, dt + O(\log T).
\]
The first integral is \(d_L T \log \frac{4T}{e} + T \log(\lambda Q^2) \), and the second integral is \(O(1) \) for sufficiently large and negative \(b \) by the method used to derive (6). Hence,
\[I_i = \left(\frac{1}{2} - b \right) \left(d_L T \log \frac{4T}{e} + T \log(\lambda Q^2) \right) + O(\log T). \]

With the estimates for the \(I_{j,k} \)'s, we have proved the second part of the theorem.

REFERENCES